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Dynamically Modeling SARS and Other Newly
Emerging Respiratory llinesses

Past, Present, and Future

Chris T. Bauch,* James O. Lloyd-Smith,7 Megan P. Coffee,} and Alison P. Galvani§

Abstract: The emergence and rapid global spread of the severe
acute respiratory syndrome (SARS) coronavirus in 2002-2003
prompted efforts by modelers to characterize SARS epidemiology
and inform control policies. We overview and discuss models for
emerging infectious diseases (EIDs), provide a critical survey of
SARS modeling literature, and discuss promising future directions
for research. We reconcile discrepancies between published esti-
mates of the basic reproductive number R, for SARS (a crucial
epidemiologic parameter), discuss insights regarding SARS control
measures that have emerged uniquely from a modeling approach,
and argue that high priorities for future modeling of SARS and
similar respiratory EIDs should include informing quarantine policy
and better understanding the impact of population heterogeneity on
transmission patterns.

(Epidemiology 2005;16: 791-801)

he outbreak of severe acute respiratory syndrome (SARS)

coronavirus provided a warning of the vulnerability of the
human population to emerging diseases and was in many
ways paradigmatic of emerging infectious diseases (EIDs) in
the modern era. Air travel led to rapid global spread of the
disease, yet electronic communication and the leadership of
the World Health Organization facilitated an unprecedented
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international and interdisciplinary response. At the same
time, action had to be taken based on sparse and evolving
knowledge about a novel pathogen, and so primary methods
for SARS control were the age-old measures of quarantine,
case isolation, and infection control. Puzzling aspects of
SARS data suggested a complex epidemiology: major out-
breaks occurred in some cities but not others, and certain
individuals or situations generated extraordinarily large num-
bers of secondary cases—the so-called superspreading events
(SSEs). Questions abounded and mathematical modeling
played an important role in understanding the complexities of
this new disease.

In the 18 months since the SARS coronavirus was iden-
tified, more than 14 modeling studies of the 2002-2003 SARS
outbreak have been published (Table 1).""'* The models devel-
oped during and after the SARS epidemic varied widely in terms
of populations studied, motivating questions, design, and, occa-
sionally, conclusions. While the epidemic was in progress,
models were produced to predict whether a global pandemic was
possible and whether control measures being applied were
adequate.'* Subsequent work has sought to discern general
principles of EID epidemiology or to derive lessons for the next
emergence of a SARS-like disease.>!>'*

We review this burgeoning literature, summarizing ma-
jor results relevant to possible SARS reemergence or to other
EIDs arising through zoonosis or bioterrorism. We emphasize
dynamic (ie, mathematical or mechanistic) models that ex-
plicitly incorporate epidemiologic mechanisms (Table 2)
rather than statistical models. We begin with a brief intro-
duction to modeling techniques for emerging diseases. We
then review the SARS modeling literature along 2 broad
themes relevant to an unfolding epidemic: understanding the
basic epidemiology of the disease and evaluating control
strategies. We conclude with a general discussion on direc-
tions for further research in SARS and EID modeling.

MODELS OF EMERGING INFECTIOUS DISEASES
Modeling plays an important role in gaining insights
into infectious disease epidemiology and in designing
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TABLE 1. Descriptions of Published SARS Models
Study Population Model Design Focus Caveats Conclusions
Riley et al' Hong Kong Stochastic metapopulation  Estimation of R in SSEs not taken into  Transmission fell during
compartmental model absence of account in course of outbreak as a
with hospitalized and superspreading estimation of R result of control
infectious presymptom events (SSEs); measures and reduced
stages control measures; contact; movement
nosocomial restrictions can be
transmission effective; hospital
transmission is
significant
Lipsitch Hong Kong, Both deterministic and Estimation of R and  Assumes Need to apply multiple
et al? Singapore stochastic compartmental T; assessing homogeneous control measures; more
models with quarantine, control measures; mixing variance in secondary
isolation probability of infections, and lower R,
SARS invasion increase extinction
probability of incipient
outbreaks
Lloyd-Smith Generic hospital/  Stochastic compartmental ~ Emphasis on risks Hypothetical Hospital-based

et al®

Chowell
et al*

Hsieh et al®

Ng et al®

Choi and Pak’

community
populations

Hong Kong,
Toronto,
Singapore

Taiwan

Hong Kong,
Beijing, Inner
Mongolia

Toronto, Hong
Kong

model with several
control measures;
community and hospital
transmission

Deterministic
compartmental model
with 2 possible
susceptibility levels

Deterministic
compartmental model
(with discrete time steps)

Deterministic
compartmental model
with 2 viral strains

Discrete-time model with
simple exponential
growth of cases

of nosocomial
transmission and
on assessing
control measures

Population
heterogeneity in
susceptibility,
assessing control
measures

Determining how
best to improve
control of
nosocomial
transmission

Observed outbreak
pattern in Hong
Kong can only be
explained by
assuming 2 strains

Explanation of
modeling basics
for health experts

population; only
healthcare workers
(not patients or
visitors) could
transmit

Some parameters
set arbitrarily;
assumes
nonnegligible
transmission
during exposed
period

Simplified
representation of
transmission
process; neglects
change in
transmission
before and after
controls

No data confirming
existence of 2
strains in humans;

unclear if outbreak

data can really be
interpreted as 2
epidemics

Analysis of data and
model output does
not exploit known
and proven
techniques (eg,
least-squares
fitting)

precautions are most
potent; combined
effects of control
measures can be
nonlinear and
unintuitive (so
modeling is key);
timeliness is important

Ability to control
outbreak is most
sensitive to
effectiveness of
isolation and rate of
diagnosis

Best ways to control
outbreaks are more
efficient diagnosis and
reclassification
procedures, and
reduced time to
isolation

A simple susceptible—
infected—recovered
(SIR) model does not
apply to SARS; data
suggest circulation of a
second SARS precursor
variant

Simple models are
didactic and can
quickly provide rough
estimates of important
parameters

(Continued)
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TABLE 1. (Continued)
Study Population Model Design Focus Caveats Conclusions
Nishiura et al®*  Japan Deterministic Seeks to explain why Limited sensitivity Initial number of
compartmental some countries did analysis; imported cases is an
model with not experience a deterministic important determinant
quarantine, SARS outbreak model applied to of outbreak probability
isolation stochastic invasion
Wang and Beijing Simplified Parameter estimation ~ No sensitivity Applying control
Ruan’ deterministic and assessment of analysis; measures early is
compartmental control measures phenomenologic important in order to
model analysis; avoid endemic
deterministic persistence
treatment of
invasion
Zhou and Singapore, Hong  Logistic curve fitted  Curve-fitting, Neglects change in Logistic models can
Yan'? Kong, Beijing to data prediction of end transmission predict cumulative

point of outbreak

Masuda et al'’  N/A Contact network SSEs, spatial effects,
model and social
networks
Meyers et al'>  Vancouver Contact network Understanding
model heterogeneity in
SARS transmission
(SSEs, geographic
variation in
outbreak
occurrences)
Wallinga and Hong Kong, Likelihood-based Estimation of the
Teunis'? Vietnam, estimation effective
Singapore, procedure for reproductive
Canada approximating number R
chain of
transmission
Gumel et al'* Toronto, Hong Deterministic Assessing the
Kong, compartmental efficacy of control
Singapore, model with measures
Beijing quarantine,
isolation

before and after
application of
controls

Little application to
real outbreaks or
realistic
parameterization

Network is static and
does not change
during course of
epidemic

Some limitations
apply for initial
cases when date
of symptom onset
is less than
generation time

Assumes
homogeneous
mixing; numeric
estimates subject
to strong
assumptions

numbers of infected
persons and end point
of outbreak

Social network structure
impacts spread: highly
connected SSEs are
crucial

Network structure, and
the location of index
cases within a network,
can influence size of
outbreaks and chances
of an epidemic
occurring

R dropped below 1 once
the global SARS alert
was issued, indicating
effectiveness of control
measures

A perfect isolation policy
alone is sufficient to
control SARS, with or
without quarantine;
resources should be
devoted
disproportionately to
isolation programs

NA indicates not applicable.

control strategies, whether for novel infectious agents such
as SARS or known pathogens that are reemerging under
new circumstances. There are many instances in which
EID epidemiology or health policy has been informed by
models. For example, models aided in controlling the
foot-and-mouth outbreak in Britain in 2001,'°72! under-
standing the hazard posed by monkeypox after smallpox
eradication,”*** forecasting HIV trends,?* analyzing pat-
terns of reemergence of diseases such as dengue,” and

© 2005 Lippincott Williams & Wilkins

assessing threats of bioterrorism from infectious agents
such as anthrax or smallpox.?¢2%

Modeling allows for estimation of epidemiologic pa-
rameters from data, identification of likely mechanisms un-
derlying observed patterns, assessment of the relative merits
of alternative control strategies, and prediction of epidemio-
logic or evolutionary dynamics. The first step in designing a
modeling study requires identification of the questions being
asked followed by development of a model appropriate to

793

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



Bauch et al Epidemiology ® Volume 16, Number 6, November 2005

TABLE 2. Glossary of Terms Used in Dynamic Modeling

Dynamic (mechanistic/mathematical) model A model that explicitly incorporates known or hypothesized epidemiologic
mechanisms, allowing for prediction of future temporal development under various

scenarios (eg, individual-based simulation model)

Phenomenologic model A model designed to reproduce trends observed in data without specifying the

underlying mechanisms (eg, fitting a curve to data)

Compartmental model An epidemic model that divides the population into mutually exclusive categories
(compartments) based on disease status, age, risk factor, and so on; often
abbreviated by letters denoting the compartments included in the model (SIR, SEIR,
and so on; see Table 1), eg, susceptible (S), infected but not infectious (E),

infectious (I), recovered (R)

A model in which the future can be unambiguously determined based on precise
knowledge of the present state of the system, eg, ordinary differential equation
models

Deterministic model

Stochastic model A model in which some or all events are governed by chance (and hence not

deterministic); multiple outcomes are possible for a given starting state of the system

Parameter An independent quantity that determines some aspect of the system’s behavior (eg,
duration of infectiousness)
Variable A dependent quantity that evolves over time in response to the initial state of the

system, values of model parameters, and stochastic effects, if any
Basic reproductive number (R,)) The average number of secondary infections produced by a typical infected individual
in an otherwise susceptible population; R, is often computed as a threshold quantity
derived from a dynamic model; in homogeneously mixing populations, this threshold

quantity agrees exactly with the above definition of R,; however, in heterogeneously

mixing populations, they may differ>®

Effective reproductive number (R)
Control reproductive number (R,)
Generation time/serial interval (7)

Average number of secondary infections produced by a typical infected individual
The effective reproductive number in the presence of control measures
The average time between the onset of symptoms in a given infected individual and

the onset of symptoms in individuals that person has infected

Theta (6)

Proportion of transmission occurring before an individual exhibits symptoms

those questions. A broad range of modeling approaches may
be adopted (Tables 1 and 2).

When developing a model, one must decide how much
detail to incorporate. A highly detailed, realistic model makes
all assumptions explicit and affords greater opportunities to
investigate governing mechanisms and assess control strate-
gies. For example, to evaluate restrictions on travel, it is
necessary to incorporate spatial structure into the model.!
However, greater detail is not an unqualified good. Model
results are often sensitive to parameters in ways that may be
difficult to foresee or understand; therefore, setting parame-
ters arbitrarily, without reference to data, is hazardous.?’ This
danger only increases with the number of parameters to be
estimated. The problem can be ameliorated by analyzing the
sensitivity of model predictions to parameters whose values
are not known precisely.>® However, this process of sensitiv-
ity analysis is often neglected in practice. An even greater
challenge is to evaluate sensitivity to model structure, ie, to
different possible ways of distilling a complex reality into an
idealized modeling framework. Simpler models, by contrast,
require fewer estimated parameters and are therefore easier to
analyze. However, the resulting phenomenologic description
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of the system imparts less ability to understand governing
mechanisms and assess control measures. The implicit sim-
plifying assumptions involved can also introduce inaccura-
cies (although this is not necessarily the case). Selection of
the most appropriate level of detail depends on the questions
being asked. Comparing results from independent modeling
studies with differing levels of detail can be fruitful—in a
sense, the ultimate structural sensitivity analysis—and we
carry out such a comparison in this review.

Another important distinction for modeling studies of
EIDs is between deterministic and stochastic models (Table
2). Both disease transmission between individuals and dis-
ease progression within individuals are probabilistic by na-
ture. In the beginning stages of an outbreak, the number of
infected individuals is very small, and so chance events play
an important role in transmission dynamics. As a result of
chance, diseases with epidemic potential can die out, or they
can generate more infections than expected. Deterministic
models cannot capture this variation, and in the early stages
of an outbreak, such models underestimate both the proba-
bility of extinction and the probability of an unusually rapid
outbreak. In some cases, chance events only serve to produce

© 2005 Lippincott Williams & Wilkins
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variance around a population average that is accurately
predicted by a deterministic model, whereas in other cases,
the average behavior of a stochastic model differs from the
deterministic prediction. Deterministic models are not neces-
sarily inappropriate for studying invasion, but they should be
applied cautiously and with an appreciation for stochastic
effects.

In tackling SARS, researchers have taken a variety of
approaches, ranging from the simplest possible epidemic
models to sophisticated models incorporating various popu-
lation heterogeneities (Table 1). In the following sections, we
review the studies in detail.

CHARACTERIZING EPIDEMIOLOGIC
PROPERTIES OF EMERGING
INFECTIOUS DISEASES

Forecasting the course of an epidemic and the best
strategies for its containment can often be based on a handful
of epidemiologic quantities: the basic reproductive number
(R,),>" the degree of individual heterogeneity in infectious-
ness, the generation time (7), and the proportion of transmis-
sion occurring before the symptomatic period (6).>* Estimat-
ing these parameters is one of the first challenges when a new
infectious disease emerges.

The Basic Reproductive Number (R,)

The basic reproductive number is the average number
of secondary infections produced by a typical infected indi-
vidual in a wholly susceptible population (Table 2).>'** If R,
is less than one, each infection will not replace itself on
average, and the outbreak will not be sustained. If R, exceeds
one, then the number of infected individuals multiplies and an
epidemic may ensue. As the epidemic spreads, the proportion
of the population that is susceptible declines. Thus, in a
homogeneously mixed population, infectious individuals be-
gin to “waste” contacts on individuals that are already in-
fected or immune, and so the number of new infections
produced per infected individual also declines. Here, it be-
comes useful to define the effective reproductive number (R)
as the average number of secondary infections produced by a
typical infected individual (in a population with some pro-
portion of susceptible individuals). In a homogeneously
mixed population, R = fR,, in which f is the proportion of
susceptible individuals at a given point in time. (With heter-
ogeneous mixing, R declines even faster.**) Initially, R = R,
but R declines over time as susceptibles are depleted. Around
the epidemic peak, R = 1, and thereafter, the epidemic starts
to burn out. It is also useful to distinguish the control
reproductive number (R;) as the value of R in the presence of
control measures. '* If R, can be sustained at values below
one, then the disease will eventually be eradicated.

R, is a population-average quantity that neglects vari-
ation in the number of secondary cases produced per infected

© 2005 Lippincott Williams & Wilkins

individual. However, such variation was often evident in the
initial chain of SARS transmission before control measures
were in place. Most infected individuals did not transmit the
infection further, but in a few cases, known as superspread-
ing events (SSEs), a small number of infected individuals
produced a disproportionately large number of secondary
cases. Lipsitch et al* have shown that, for a given R, a greater
variance in secondary cases per index case reduces the
probability of an epidemic. Lloyd-Smith et al*** have shown
that individual variation is significant for at least 10 important
EIDs. Using a stochastic modeling framework, they have
demonstrated that greater variation leads to less frequent but
more explosive outbreaks. Thus, in addition to knowing R,,
some measure of variance in secondary transmission is an
important measure in classifying the tenacity of a nascent
epidemic.

Computation of R, for SARS

Model-free estimates of R, can be determined from
mapping out the chain of transmission early in the epidemic.
However, these data are often not comprehensive, and so R,
is usually estimated by fitting incidence time series to an
epidemic model. Almost all studies reviewed here used this
latter method. These studies produced considerable variation
in estimates of R, (or R) for SARS, even for the same
populations (Table 1, Fig. 1). Understanding the source of
these discrepancies is clearly important, and a critical com-
parison of modeling studies can reconcile such differences.

SARS
Consensus estimate [ * All locations
Riley etal.'| —— Hong Kong (95% Cl)
Lipsitch et al.”|  epesjee— Hong Kong, Singapore (90% CI)
Hsieh et al.® 3 Taiwan
Chowelletal.’ @ Toronto, Hong Kong, Singapore
Gumel et al. ™} ¢ & Hong Kong, Toronto, Beijing, Singapore
Wang & Ruan®f Beijing
Zhou & Yan'’F 4 o Hong Kong, Singapore, Beijing
Choi & Pak’|  #¢ Toronto, Hong Kong
Wallinga & Teunis' _‘_-0— \H/;Tgalr?gsgisg)m)
= Singapore (95% Cl)
== Toronto (95% Cl)
g;I;-IIEI,EARSE g236081 ‘ Ebgl?a Smallpox Measles
Monkfeypox )

0 2 4 6 é 1.0 1.2 1.4 1.6 1.8
Estimate of reproductive number (Fi0 or R)

FIGURE 1. R, estimates from various studies for SARS and
other diseases.'~'4:23:33.60.61 “Consensus estimate” refers to
the SARS R, estimate (approximately 3) arrived at in this article
by critically comparing independent SARS studies. For Lipsitch
et al,' the triangle denotes their best deterministic estimate,
whereas the diamond denotes the mean of their Bayesian
estimate. The interval for Wang and Ruan® indicates a range of
possible values depending on assumptions made about the
generation time (7).
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There are at least 3 possible sources for such discrepancies:
different model structure, different input parameter values,
and different estimation procedures (eg, curve-fitting vs
Bayesian statistics). For the case of SARS, studies with
radically different model structures often came up with com-
parable estimates for R,,. For example, Zhou and Yan'? fitted
the time series of cumulative probable cases to a simple
logistic curve, estimating R, = 2.1 for Hong Kong. (How-
ever, because this approach integrates over both precontrol
and postcontrol phases, their estimate is an average of a larger
“true” R, before control measures and a smaller R, after
control measures.) By comparison, Riley et al' developed a
detailed stochastic spatial simulation of SARS in Hong Kong
and estimated R, = 2.7 during the precontrol phase (and in
the absence of SSEs; including the SSEs would have in-
creased this estimate, perhaps by 20%). Taking a very dif-
ferent approach by applying maximum-likelihood procedures
to reconstruct the chain of transmission, Wallinga and Teu-
nis'® estimated R = 3.6 for Hong Kong.

In other cases, different types of models produced very
different results. For example, Chowell et al* assumed a
structured population consisting of 2 groups with different
susceptibility, estimating R, = 1.2 for Hong Kong. Because
these researchers derived a mathematical expression for R,,
the source of this discrepancy is immediately evident: if
model parameters are chosen such that the population is
uniformly susceptible, the result is R, = 2.6, roughly in line
with other estimates. (We note in passing that this ease of
comparison demonstrates 1 of the advantages of rigorous
mathematical analysis over complex individual-based simu-
lations that must be reimplemented by other investigators for
results to be confirmed.)

Other discrepancies can likewise be explained. Wang
and Ruan® used a simplified compartmental model to estimate
that R, lies between 1.1 and 3.3 for Beijing. However, the
lower bound is highly unrealistic because it was derived
under the incorrect assumption that transmission ceased en-
tirely after admission to the hospital.>> Choi and Pak’ fit
cumulative case data in the early phases of the outbreaks to a
geometric growth curve and estimated R, = 1.5 for Toronto
and R, = 2.0 for Hong Kong. These estimates are also lower
than they should be because the authors incorrectly used the
incubation period (5 days) in their calculations instead of
the generation time, or serial interval, of the disease. (See the
definitions in Table 2.) Using the generation time instead (eg,
8.4 days in Singapore?) yields R, = 2.5 for Toronto and R, =
3.4 for Hong Kong.

The R, estimates of Gumel et al'” are uniformly higher
than other estimates (Fig. 1). The authors note that their
possible overestimation of the efficacy of isolation would
lead to overestimates of the transmission rate; this in turn will
cause overestimation of R, The nosocomial transmission
model of Hsich et al® incorporates details of the hospital
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admission and reclassification procedures. By fitting the
model to time series of cumulative cases and deaths, they
estimated R, = 4.2 for Taiwan. However, they cautioned that
this value may be an overestimate as a result of uncertainties
regarding the temporal variation in infectiousness and viral
load. They also noted that the value may reflect peculiarities
of the Taiwan outbreak such as the relatively high rate (73%)
of nosocomial transmission.

This critical comparison suggests that major discrepan-
cies among published studies can largely be accounted for
and that R, for SARS is approximately 3 in populations
where an outbreak occurred. The fact that independent stud-
ies using different models can be reconciled is very encour-
aging. However, important questions remain, particularly
with respect to heterogeneity. The dependence of R, on
heterogeneity in host susceptibility is apparent in the results
of Chowell et al,* as pointed out previously. Other heteroge-
neities such as spatial structure'® and pathogen strain
structure® can also alter predictions. Most of the published
models did not incorporate such heterogeneities, although
these are important for SARS. For example, there was con-
siderable age-related variation in susceptibility and transmis-
sibility,>>>"%° an increased risk of infection for healthcare
workers who inadvertently acted to bridge within-hospital
and community-wide epidemics,**! a clustering together of
individuals with above-average susceptibility in healthcare
settings (eg, the elderly),*>**** and, possibly, several differ-
ent modes of transmission.® Clusters of infections among
particular groups occurred often, and models have begun to
examine the importance of social networks in the spread of
SARS.""!? Considerable spatial heterogeneity also existed
for SARS on a global scale, with some countries experiencing
relatively large outbreaks and others having little or no
activity (although these differences are probably partly the
result of chance).** Individual heterogeneity in infectiousness
can be quantified from detailed contact tracing data, but the
associated model-free estimation of R,, (as the mean number
of cases caused in the chain of transmission) may be biased
low as a result of missing data.>**

The Generation Time (T)

To determine the speed with which an epidemic
spreads, one must know both R, and the generation time (7)
of the infection. This information is more important for
epidemic EIDs than endemic diseases: when 7 is larger, more
time is available to apply control measures, conduct gene
sequencing, characterize pathogen epidemiology, educate the
public, set up isolation facilities, and conduct contact tracing.
Conversely, when T is smaller, even a disease with a modest
R, can spread out of control as health authorities lose the
“race to trace.”*> Generation time is implicitly incorporated
into most epidemic models in the form of assumptions about
incubation periods and infectious periods. It should be em-
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phasized, however, that the simplest types of compartmental
models (ordinary differential equations) misrepresent the
population distributions of these periods, such that too many
individuals progress too rapidly to symptoms and then recov-
ery. More realistic (empiric) distributions of incubation and
infectious periods may be preferable.* This point has been
made before,***” but the distinction may be particularly
important for SARS because evidence shows that viral load
(and perhaps infectiousness) increases for the first 10 to 15
days after symptoms appear.*®

The Proportion of Transmission Occurring
Before Symptom Onset (60)

The parameter 6 is the proportion of transmission that
occurs before symptoms appear.>* 6 determines the potential
efficacy of various control measures and suggests whether
models should include nosocomial transmission. For diseases
with large 6, transmission in the general population will be
more widespread, and presymptomatic controls such as quar-
antine should be more effective. Conversely, for small 0, we
may deduce that quarantine is effective only insofar as it
reduces the time to isolation, and nosocomial transmission
should be more important because individuals become infec-
tious after exhibiting symptoms and being admitted to the
hospital.

SARS had a relatively low R, (approximately 3), a
small value of 0 (<0.11),** and T of approximately 1 week.
Smallpox is the most similar disease with respect to these 3
parameters, and it is interesting to note that smallpox and
SARS are to date the only 2 infectious diseases that have been
eradicated worldwide (although smallpox was endemic and
different control strategies were applied). In the next section,
we review control strategies for SARS and discuss how
epidemic models were used to assess their efficacy.

ASSESSING CONTROL STRATEGIES

As is typical of many EIDs, there were no vaccines or
drugs against SARS. Thus, the only ways of limiting trans-
mission were the time-honored methods of quarantine, case
isolation, travel restrictions, and barrier precautions (eg,
masks, gloves, handwashing). Such control strategies have
been applied for centuries and will doubtless be the first line
of defense against future EIDs as well, yet they had received
relatively limited attention from modelers before the emer-
gence of SARS. The qualitative impact of control measures is
known without the aid of models: they tend to decrease
transmission. However, models offer a rigorous analytical
framework that provides a nuanced, quantitative understand-
ing of the impact of control measures. The efficacy of
multiple control measures may depend on control and epide-
miologic parameters in a complex, nonlinear way rather than
in a simple additive fashion. For instance, there may exist a
threshold in contact-tracing delays beyond which an epidemic

© 2005 Lippincott Williams & Wilkins

“blows up.” In such cases, models can characterize this
nonlinear dependence and quantify such thresholds. Also,
when control measures are excessively costly, inconvenient,
or burdensome, rigorous modeling can help determine
whether and when partial relaxation of certain control mea-
sures is desirable. In the following discussion of SARS
control strategies, we emphasize conclusions that can be
derived only by a modeling approach.

Expressed in its most basic form (and ignoring popu-
lation heterogeneity and temporal development), R, is the
product of the duration of infectiousness (D), the number of
contacts of an infected individual with susceptible individuals
per unit time (c), and the probability of transmission per
contact between an infected and a susceptible individual (B).
Hence, R, = Dcf. Reducing R, below 1 depends on efforts to
reduce D (eg, through antimicrobial therapy or reducing time
from infection to isolation), ¢ (eg, through quarantine, case
isolation, movement restrictions), and 8 (eg, through masks,
gloves, handwashing). We use this convenient (if ideal-
ized) categorization in the following discussion of control
measures.

Quarantine and Isolation

Quarantine, which reduces the contact rate (c¢) of pos-
sibly infected individuals before symptoms appear, controls
an outbreak through 2 routes. First, the quarantine of incu-
bating individuals prevents them from spreading the infection
once they become infectious. Second, the monitoring of
quarantined individuals for evidence of symptoms reduces
the time from onset of symptoms to hospital admission. If 6
is large, then quarantine acts through both routes described
previously, whereas if 6 is small, the first route is much less
important. For the case of SARS, with a relatively small value
of 6, quarantine should work mostly by reducing the onset-
to-admission time; this intuition is borne out by modeling
results.’

The few SARS models that studied quarantine have
generated some surprising predictions. Lipsitch et al' devel-
oped a deterministic compartmental susceptible—exposed—
infected—removed (SEIR) model for transmission in the gen-
eral population with a parameter controlling the proportion of
contacts of probable cases that are quarantined. They found
that, beyond a certain threshold, quarantining a larger fraction
of an infected person’s contacts actually decreases the aver-
age number of days spent in quarantine per person, because a
smaller fraction of the population must ultimately be quaran-
tined if the epidemic is controlled in its early stages. Lloyd-
Smith et al® developed a detailed mechanistic model that
accounted for delays in contact tracing and imperfect quar-
antine. They concluded that the impact of quarantine actually
increases as R, increases. In fact, for sufficiently low values
of R,, quarantine has little discernible effect. These models
assume that the rate of quarantine of undiagnosed cases
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grows linearly with the number of undiagnosed cases; in fact,
the process is nonlinear, because the availability of contacts
to trace depends on diagnosis of other cases. A more sophis-
ticated mathematical analysis is required to take this nonlin-
earity into account.**’

On a larger spatial scale, restricting movement between
subpopulations is equivalent to reducing the contact rate (¢).
Modeling movement restriction requires a spatially structured
model such as the metapopulation model based on Hong
Kong’s districts developed by Riley et al.! Their model
predicted that imposing movement restrictions between the
districts of Hong Kong would have reduced transmission
substantially. Although their depiction of both natural move-
ment patterns and movement controls was highly idealized,
their conclusion raised the important point that countries
lacking sufficient resources for less disruptive measures could
effectively fight SARS through movement restrictions. The
contact rate may also have dropped because of behavioral
changes in the general public such as decreased attendance at
social functions and decreased use of public transport. Riley
et al' attributed part of the drop in transmission in Hong Kong
to this effect.

Barrier Precautions

The probability of transmission per contact (3) can be
reduced through handwashing and through barrier precau-
tions such as masks and gloves.*> In their model incorpo-
rating separate community and hospital-based populations,
Lloyd-Smith et al® found that contact precautions applied to
all individuals in the hospital are always more effective than
precautions directed only at identified patients with SARS
(arising from the possibility of infected but undiagnosed
healthcare workers). During the SARS outbreaks, precautions
were typically restricted to known SARS cases, and it is
clear, with hindsight, that undiagnosed or misdiagnosed pa-
tients were a critically important source of SARS transmis-
sion worldwide.*>° Hence, the benefit of strict hospital-wide
contact precautions is an important lesson to apply to future
difficult-to-diagnose SARS-like illnesses.

Duration of Infectiousness

A third way to bring R, below 1 is by reducing D either
by decreasing the natural duration of infectiousness in the
host through antimicrobial therapies, or by decreasing the
effective duration of infectiousness through faster hospital-
ization, classification, and isolation. For most novel patho-
gens (including SARS), only the latter approach is possible.
For SARS, many models indicated that decreasing the time
between symptom onset and case isolation has a dispropor-
tionate effect in controlling the outbreak.'** This effect
arises because little or no transmission occurs before symp-
toms are apparent, and indeed the predicted effect would have
been greater still had models incorporated the suspected
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increase in SARS infectiousness in the first 10 days after
infection.*® Hsich et al®> modeled the Taiwan outbreak and
found that most nosocomial transmission occurred in the time
between admission of suspected SARS cases and reclassifi-
cation as probable SARS or non-SARS cases. Hence, the
authors recommended that efficient diagnosis should be a top
priority in control of nosocomial outbreaks.

The Importance of Timing

A recurring theme in many SARS models is the impor-
tance of timely application of control measures.®>"%%!13:14
These models show that quarantine and isolation have a
disproportionate impact on epidemic control if applied early
in the outbreak. Conversely, delays in imposing control can
lead to large case burdens or even failure of potentially
successful containment measures. The dependence of out-
break size on time of application is nonlinear: there are
crucial periods early in the outbreak beyond which the effec-
tiveness of control measures is severely degraded. This qual-
itative truth is familiar to epidemiologists; the role of models
is to quantitatively identify critical periods for policy imple-
mentation and to characterize the nonlinear dependence of
outbreak size on the efficacy and timeliness of control mea-
sures. A less scientific but no less significant role for models
is to demonstrate the disastrous consequences of delays or the
implications if certain pathogens were to be introduced into
virgin populations, helping to overcome political inertia and
spur decisive measures.

Effects of Combined Control Measures

Authors have been in general agreement that the appli-
cation of multiple control measures was crucial in controlling
the SARS outbreak.'> However, according to the models
used in these studies, some control measures were much more
effective than others. For example, Lipsitch et al® predicted
that reductions in time to isolation should have a dispropor-
tionate impact on transmission, whereas Gumel et al'* found
that isolation is much more effective than quarantine and
suggested that more resources should be devoted to isolation
programs than quarantine programs. Moreover, models can
play an important role in highlighting nonintuitive interac-
tions between simultaneous control measures. Lloyd-Smith et
al® identified major tradeoffs between control measures,
showing that it is fruitless to upgrade isolation practices if
patients are not hospitalized quickly enough, or, conversely,
that more rapid hospitalization does not help if transmission
by identified patients is not sufficiently reduced. In general,
although multiple control measures can lead to valuable
synergy, blind improvement of any control measure may be a
less wise investment than targeted upgrades of identified
weaknesses.

A final contribution of modeling is in estimating the
efficacy of control measures through interpretation of inci-

© 2005 Lippincott Williams & Wilkins

Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



Epidemiology ® Volume 16, Number 6, November 2005

Dynamically Modeling SARS

dence data, particularly by comparing fitted values of param-
eters before and after imposition of controls (Lloyd-Smith et
al., unpublished data)."*'*> Using this method, Riley et al'
illustrated a decrease in both the transmission rate and onset-
to-admission time as the Hong Kong SARS epidemic was
brought under control. They attributed the decline in trans-
mission to changes in the public contact pattern, although it
has been noted elsewhere that this decline may also have been
the result of spatial structure.’® Chowell et al* studied the 2
successive Toronto outbreaks in this way, and demonstrated
an increase in the effectiveness of isolation and a decrease in
the time from infection to diagnosis during the second out-
break compared with the first outbreak. Finally, Lloyd-Smith
et al (unpublished data) showed that SARS data from Beijing
and Singapore are more consistent with control measures that
entirely block transmission by some individuals than with
measures that partially reduce transmission by all individuals.

DISCUSSION

This review suggests promising directions for future
research on SARS and SARS-like EIDs. Most modeling
studies assumed a relatively homogeneous population, al-
though SARS exhibited considerable heterogeneity in space,
transmissibility, and susceptibility. Such heterogeneities can
significantly alter parameter estimates and model predic-
tions."*>! Heterogeneous mixing patterns inherent in human
societies tend to impede transmission and facilitate contact
tracing and quarantine efforts relative to random mixing
assumed in simpler models. Heterogeneity is expected to
affect transmission more for SARS (which is primarily spread
through droplets and close contact) than many other diseases
such as measles (which is easily spread through an airborne
route). Despite reports of age-related variation in infectious-
ness,”> no age-structured SARS models have been published
to date, and only a few models have incorporated limited
treatments of spatial structure,’ social structure,®'"!? or vari-
ation in susceptibility.* Furthermore, despite the paramount
role played by air travel in spreading EIDs, modelers have
only recently begun developing frameworks for assessing the
efficacy of air travel restrictions (Earn et al., unpublished
data). Advances in geographic information systems offer
additional possibilities for analyzing geographic differences
in R,, hospitalization trends, death rates, and contact pat-
terns.>>¢

Few models have addressed quarantine realistically by
taking factors such as quarantine failure into account.®>’
Unlike many measures that cause negligible inconvenience to
the general population, quarantine can impose a large burden:
in Taiwan, 130,000 individuals were quarantined because of
SARS.> Therefore, “fine-tuning” of quarantine policy as
guided by epidemic models might be appropriate, particularly
if the burden on the population can be reduced without much
increase in cases. Models can help determine what classes of
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contacts deserve priority, how resources should be allocated
to the various stages of the contact tracing process, and when
quarantine (or isolation) can be ended. Another way to make
models more useful to policymakers is by integrating them
into cost-effectiveness analyses.’® Such analysis can provide
guidance on choice of control strategies in situations in which
resources are limited, as is inevitably the case.

There is also a continuing role for models in under-
standing the basic epidemiology of SARS and other
emerging infectious diseases. Superspreading events have
a powerful impact on invasion dynamics for SARS and
many other EIDs (Lloyd-Smith et al., unpublished da-
ta),’> yet little is known about the causes of SSEs.
Contributing factors may include misdiagnosis, age of
patients, misguided medical procedures, heterogeneous
contact rates or viral shedding, and coinfections with other
respiratory pathogens (Lloyd-Smith et al., unpublished
data).>> Models could aid in integrating these complex
factors, establishing their relative importance, and explor-
ing how best to control SSEs. Another critical direction for
future modeling work includes the implications for control
of time-varying SARS viral load.*®

SARS models have in many ways only “scratched the
surface.” New modeling studies devoted to addressing these
issues can also take advantage of recent advances in the
understanding of SARS epidemiology. Perhaps the most
important benefit of further SARS modeling efforts is not
preparation for the possible reemergence of SARS, but rather
preparation for future respiratory EIDs such as pandemic
influenza.

This review has emphasized the effect of modeling on
the study of SARS. However, SARS has also affected mod-
eling approaches. Discussions of control have traditionally
focused on reducing R,,. This is suitable for the control and
elimination of endemic diseases in which prevalence is sub-
stantial and widespread. However, epidemic EIDs are cru-
cially affected by chance events in the early phases of their
emergence, and control efforts are shaped by reliance on
quarantine and isolation. In the wake of SARS, other param-
eters have been introduced or reemphasized as being com-
plementary to R, for assessing the efficacy of control
measures. These parameters included the proportion of
transmission occurring before onset of symptoms,>? vari-
ance in the number of secondary cases produced per
infected individual (Lloyd-Smith et al., unpublished da-
ta),” and heterogeneity in number of contacts.'?

SARS had pandemic potential, but a prompt and effec-
tive public health response curtailed this threat. The success
of future efforts to curtail emerging infectious diseases will
depend on worldwide collaboration among public health
officials, medical doctors, epidemiologists, and epidemic
modelers. Some of the benefits of this integration of expertise
have been illustrated by this review. A critical comparison of
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independent studies, running the gamut of possible models,
can help clarify aspects of SARS epidemiology, inform
control policy, and solidify confidence in the parameter
estimates and prescriptions that emerge from modeling. How-
ever, for this synergy to be fully exploited, there must be
more widespread and timely access to data by independent
research groups. Data collected with public funds should be
made widely accessible if public benefit is to be maximized.
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announced in our May 2006 issue.

A Call for Nominations:
The 2006 Rothman EPIDEMIOLOGY Prize

EPIDEMIOLOGY presents an annual award for the best paper published by the journal
during the previous year. The prize of $3,000 and a plaque goes to the author whose
paper is selected by the Editors and the Editorial Board for its originality, importance,
clarity of thought, and excellence in writing.

With this issue, we close our 2005 volume. We invite our readers to nominate papers
published during the past year. Please email your nominations to Allen Wilcox, Editor-in-

Nominations must be received no later than 1 December 2005. The winner will be

This award is made possible by an endowment from Hoffman-LaRoche Ltd., managed by
the International Society for Pharmacoepidemiology (ISPE).
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